国产一级 片内射在线视频播放-亚洲中文字幕无码va-国产美女裸身网站免费观看视频-天堂tv亚洲tv日本tv
北京理加聯(lián)合科技有限公司

LICA United Technology Limited

服務(wù)熱線: 13910499761 010-51292601
企業(yè)郵箱
應(yīng)用支持 Application Support
News 應(yīng)用支持

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

日期: 2019-03-19
瀏覽次數(shù): 257

M.K. Maid1*

, R.R. Deshmukh2

1*Department of CS and IT, Dr. B. A. M. U, Aurangabad, India

2Department of CS and IT, Dr. B. A. M. U, Aurangabad, India

*Corresponding Author: mm915monali@gmail.com?

Available online at: www.ijcseonline.org?


Abstract— Remote Sensing has wide range of applications in many different fields. Remote Sensing has been found to be a valuable tool in evaluation, monitoring, and management of land, water and crop resources. The applications of remote sensing techniques in the field of agriculture are wide and varied ranging from crop identification, detection of disease on different crops & predicting grain yield of crops. Many remote sensing applications are devoted to the agricultural sector. The selected applications are put in the context of the global challenges the agricultural sector is facing: minimizing the environmental impact, while increasing production and productivity. The application of remote sensing in agriculture typically involves measuring reflectance of electromagnetic radiation in the visible (390 to 770 nm), near-infrared (NIR, 770 to 1,300 nm), or middle-infrared (1,300 to 2,500 nm) ranges using spectrometers. This paper reviews the concept of hyperspectral remote sensing, use of remote sensing in terms of agriculture field, study of diseased wheat leaves using hyperspectral remote sensing.


Keywords—Remote Sensing, Wheat Leaf Rust, Vegetation Indices, ASD Fieldspec4 Spectroradiometer.

I. INTRODUCTION

Remote sensing refers to the activities of ?recording/observing/perceiving (sensing) objects or events at ?far away (remote) places. Remote sensing is a sub-field of ?geography. In modern usage, the term generally refers to the?use of aerial sensor technologies to detect and classify?objects on Earth (both on the surface, and in the atmosphere?and oceans) by means of propagated signals (e.g.?electromagnetic radiation) [1]. The electromagnetic?radiation is normally used as an information carrier in remote?sensing. The reflection of that energy by earth surface?materials is then measured to produce an image of the area?sensed. Generally, Remote sensing can be done on two types?of data namely imagery and non imagery. It can be done?using different kinds of remote sensing devices like ASD?fieldspec Spectroradiometer. Remote sensing have wide?range of applications in various fields, among which?Agriculture plays important role in our day to day life as not?only in india but in many countries agriculture is their?primary source of income and all human beings, animals and?many industries are dependent on agriculture field.?agriculture plays key macroeconomic roles in the?

industrialization of developing countries by relieving saving,?aggregate demand, fiscal, and foreign exchange constraints?on the industrial sector [2].

?In agriculture field winter wheat is one of the highest?yielding crops on the farm [3]. Different climatic factors and?disease symptoms affects the plant growth and it directly?results in yield of crop. Rust are among the most important?

fungal diseases of wheat worldwide [4]. There are three types of rust diseases in wheat crop: Strip Rust, Leaf Rust, Stem Rust.

Wheat rusts are caused by three related fungi [5]:?

? Stripe rust is caused by Puccinia striiformis f. sp. tritici.

? Leaf rust is caused by Puccinia triticina.

? Stem rust is caused by Puccinia graminis f. sp. tritici.

This paper reviews the study of wheat leaf rust (WLR) disease using hyperspectral analysis, different vegetation indices and spectral signatures can be used to estimate the features of diseased and healthy crop. In this review paper ASD Fieldspec4 Spectroradiometer is used for data collection of diseased wheat leaves and healthy wheat leaves. Using different vegetation indices (VIs) biophysical and biochemical properties of crop can be estimated.?

II. BASICS OF REMOTE SENSING

Hyperspectral remote sensing is used for over 100 years for?analysis of various objects and their chemical as well as?biological composition. But hyperspectral sensor offers an?alternate and nondestructive technique for analysis of?

physical and chemical properties of material. Remote sensing?of vegetation is mainly performed by obtaining the?electromagnetic wave reflectance information from canopies?using passive sensors. It is well known that the reflectance of?

light spectra from plants changes with plant type, water?content within tissues, and other intrinsic factors [6].

The reflectance from vegetation to the electromagnetic?spectrum (spectral reflectance or emission characteristics of?vegetation) is determined by chemical and morphological?characteristics of the surface of organs or leaves [7].?

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

The main applications for remote sensing of vegetation are?based on the following light spectra: (i) the ultraviolet region?(UV), which goes from 10 to 380?nm; (ii) the visible spectra,?which are composed of the blue (450–495?nm), green?(495?570?nm), and red (620–750?nm) wavelength regions;?and (iii) the near and mid infrared band (850–1700?nm)[9,10].

III. HYPERSPECTRAL REMOTE SENSING IN?AGRICULTURE

Spectral data at the leaf and canopy scales have been utilized?to improve the plant disease detection techniques from?remotely sensed observations [11,12], where the visible and?infrared regions are more sensitive to disease development?[13]. The measured spectra can be utilized to early detection?of fungus disease. Moreover, the optimized narrow bands?vegetation indices were employed to discriminate various?disease of wheat [14].?

III.I Wheat Leaf Rust (WLR) Disease

The wheat rust is an important crop disease which has three?types, i.e., wheat yellow rust (WYR), wheat leaf rust (WLR),and wheat stem rust [15].?

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

WYR disease is identified by a single symptom which occurs?as a narrow yellow stripes parallel to nervures on the leaf,?whereas WLR disease is caused by the Puccinia triticina?fungus and illustrates numerous symptoms simultaneously in?various parts of an infected leaf [16]. The WLR symptoms?vary from leaf to leaf but it presents a yellow color earlier,?then its changes to orange and dark brown. Finally, the?disease symptom ends with the dry leaf [17].

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

The effect of a disease on the pigments and structure of a?plant and the change in their spectral responses enable?spectroradiometry and remote sensing techniques to detect?plant disease effectively [18].

Crop disease can cause significant yield loss and reduction of?grain quality, which have a negative impact to food security?around the world [19].

IV. EXPERIMENTAL SETUP

IV.I Data Collection

Field spec 4 spectrometer (Analytical spectral device, ASD?Co. USA) shown in following figure having parameter?details in Table 1. Spectrum data export in ASCII text, then it?can analyze spectrum data with different software like ASD?View Spec Pro. Unscramble and MATLAB/ Octave [20].

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review


Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

V. VEGETATION INDICES FOR ESTIMATION OF WLRSYMPTOMS

Spectral data at different scales including leaf, canopy and?landscape-level have been widely used to improve precision?[21-24]. In recent years, researchers have studied various?spectral vegetation indices (SVIs) to detect different?

vegetation diseases [24-26]. Efficient use of spectral data in?detection of plant disease depends on the application. The?spectral regions from 400 to 700 and 700 to 1100 are mainly?influenced by leaf composition of pigments, structure, and?

water content [27]. The effect of a disease on the pigments?and structure of a plant and the change in their spectral?responses enable spectroradiometry and remote sensing?techniques to detect plant disease effectively [28]. There are?

indices derived from reflectance values at several?wavelengths that are able to detect and quantify the leaf?content substances such as chlorophyll, anthocyanin, and?water [29,30].

By using different types of vegetation indices estimation of?biochemical and biophysical properties of crops is possible.?Vegetation indices that are used by many researchers have?shown in following table [31].


Table 2. Different Vegetation Indices

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

VI. CONCLUSION

As Remote Sensing technology growing rapidly in?technological era and hyperspectral Remote sensing has wide?number of applications not only in agriculture field but also in?different industries which are dependent on agricultural area.?With the help of different spectral characteristics like spectral?signatures, vegetation indices, reflectance spectra we can use?it for discrimination of crops. It can be used to study the?severity of disease in crops, estimating the grain yield of?crops, analysis and growth modulation of crop.?


ACKNOWLEDGMENT?

This work is supported by Dept. of Computer Science and?Information Technology under the funds for Infrastructure?under science and Technology (DST-FIST) with sanction no.?SR/FST/ETI- 340/2013 to Dept. of Computer Science and?Information Technology, Dr. Babasaheb Ambedkar?Marathwada University, Aurangabad, Maharashtra, India.?The authors would like to thank Department and University?Authorities for providing the infrastructure and necessary?

support for carrying out the research.?


REFERENCES

[1] A. Chitradevi, S. Vijayalakshmi, “Random Forest for Multitemporal?and Multiscale Classification of Remote Sensing Satellite Imagery”,?International Journal of Computer Sciences and Engineering, Vol. 4,?Issue.2, pp.59-65, 2016.

[2] D. Souza, “Growth Complementarity Between Agriculture and?Industry: Evidence from a Panel of Developing Countries”, 2014.

[3] G. Boyle, “The Winter Wheat Guide”, Teagasc, pp. 21-40, 2016.

[4] S. N. Wegulo, “Rust Diseases of Wheat”, NebGuide, 2012.

[5] S. Markell, G. Milus, R. Cartwright, J. Hedge, “Rust Diseases of?Wheat”, Agriculture and natural resources.

[6] L. Chang, S. Peng-Sen, and Liu Shi-Rong, “A review of plant spectral?reflectance response to water physiological changes,” Chinese Journal?of Plant Ecology, vol. 40, no. 1, pp. 80–91, 2016.

[7] C. Zhang and J. M. Kovacs, “The application of small unmanned?aerial systems for precision agriculture: a review,” Precision?Agriculture, vol. 13, no. 6, pp. 693–712, 2012.

[8] J. B Campbell, “Introduction to Remote Sensing”, Taylor and Francis,?London, 1996.?

[9] H. R. Bin Abdul Rahim, M. Q. Bin Lokman, S. W. Harun, “Applied?light-side coupling with optimized spiral-patterned zinc oxide nanorod?coatings for multiple optical channel alcohol vapor sensing,” Journal?of Nanophotonics, vol. 10, no. 3, Article ID 036009, 2016.

[10] B. A. Cruden, D. Prabhu, and R. Martinez, “Absolute radiation?measurement in venus and mars entry conditions,” Journal of?Spacecraft and Rockets, vol. 49, no. 6, pp. 1069–1079, 2012.

[11] S. Sankaran, A. Mishra, R. Ehsani, and C. Davis, “A review of?advanced techniques for detecting plant diseases,” Comput. Electron.?Agriculture, vol. 72, no. 1, pp. 1–13, 2010.

[12] C. Buschmann and E. Nagel, “In vivo spectroscopy and internal optics?of leaves as basis for remote sensing of vegetation,” Int. J. Remote?Sens, vol. 14, no. 4, pp. 711–722, 1993.

[13] N. K. Poona and R. Ismail, “Using Boruta-selected spectroscopic?wavebands for the asymptomatic detection of Fusarium circinatum?stress,” IEEE J. Select. Topics Appl. Earth Observations Remote?Sens., vol. 7, no. 9, pp. 3764–3772, 2014.

[14] W. Huang, “New optimized spectral indices for identifying and?monitoring winter wheat diseases,” IEEE J. Select. Topics Appl. Earth?Observations Remote Sens., vol. 7, no. 6, pp. 2516–2524, 2014.

[15] M. D. Bolton, J. A. Kolmer, and D. F. Garvin, “Wheat leaf rust caused?by Puccinia triticina,” Molecular Plant Pathology, vol. 9, no. 5, pp.?563–575, 2008.

[16] C. Robert, M.-O. Bancal, B. Ney, and C. Lannou, “Wheat leaf?photosynthesis loss due to leaf rust, with respect to lesion development?and leaf nitrogen status,” New Phytologist, vol. 165, no. 1, pp. 227–241, 2005.

[17] D. Ashourloo, H. Aghighi, A. A. Matkan, M. R. Mobasheri, and A. M.?Rad, “An Investigation Into Machine Learning Regression Techniques?For The Leaf Rust Disease Detection Using Hyperspectral?Measurement”, IEEE journal of selected topics in applied earth?observations and remote sensing, vol. 9, pp. 4344 – 4351, 2016.

[18] J.C. Zhang, R.L. Pu, J.H.Wang, W.J. Huang, L.Yuan, J.H. Luo,?“Detecting powdery mildew of winter wheat using leaf level?hyperspectral measurements”, Comput. Electron. Agric, pp. 13–23,?2012.

[19] R. N. Strange, P. R. Scott, “Plant Disease: A threat to global food?security”, Annual reviews phytopathol, vol. 43, pp. 83-116, 2005.

[20] R. M. Misal, R. R. Deshmukh, “Application of Near-Infrared?Spectrometer in Agro-Food Analysis: A Review”, International Journal?of Computer Applications, Vol. 141 No.7, pp. 0975 – 8887, 2016.

[21] H.D Roelofsen, P. M. van Bodegom, L. Kooistra, , J. P.M. Witte,?“Trait estimation in herbaceous plant assemblages from in situ canopy?spectra” Remote Sens., Vol. 5, pp. 6323–6345, 2013.

[22] S. Delalieux, A. Auwerkerken, V.W. Verstraeten, B. Somers,?R.Valcke, S.Lhermitte, J. Keulemanss, P. Coppin, “Hyperspectral?reflectance and fluorescence imaging to detect scab induced stress in?Apple leaves”, Remote Sens, Vol. 1, pp. 858–874, 2009.

[23] U. Steiner, K. Bürling, E.C. Oerke, “Sensor use in plant protection”,?Gesunde Pflanz, Vol. 60, pp. 131–141, 2008.?

[24] J.C. Zhang, R.L. Pu, J.H.Wang, W.J. Huang, L.Yuan, J .Wang, “Using?in-situ hyperspectral data for detecting and discriminating yellow rust?disease from nutrient stresse”,Field Crops Res., Vol. 134, pp.165–174,2012.

[25] C.Hillnhütter, A.K. Mahlein, R.A. Sikora, E.C. Oerke, “Remote?sensing to detect plant stress induced by Heterodera schachtii and?Rhizoctonia solani in sugar beet fields”, Field Crops Res., Vol. 122,?pp. 70–77, 2011.?

[26] D. Moshou, C. Bravo, J. West, S. Wahlen, A. McCartney, H. Ramon,?“Automatic detection of ―yellow rust‖ in wheat using reflectance?measurements and neural networks”, Comput. Electron. Agric, Vol.?44, pp. 173–188, 2004.

[27] A.K. Mahlein, T. Rumpf, P. Welke, H.W. Dehne, L. Plümer, U.?Steiner, E.C. Oerke, “Development of spectral indices for detecting?and identifying plant diseases”, Remote Sens. Environ, Vol. 128, pp.?21–30, 2013.?

[28] J.C. Zhang, R.L. Pu, J.H.Wang, W.J. Huang, L. Yuan, J.H. Luo,?“Detecting powdery mildew of winter wheat using leaf level13–23, 2012.?

[29] A.A. Gitelson, Y.J. Kaufman, R. Stark, D. Rundquist, “Novel?algorithms for remote estimation of vegetation fraction”, Remote Sens.?Environ, Vol.80, pp. 76–87, 2002.?

[30] J. Penuelas, F. Baret, I. Filella, “Semiempirical indices to assess?carotenoids/chlorophyll a ratio from leaf spectral reflectance”,?Photosynthetica, Vol. 31, pp. 221–230, 1995.?

[31] P. V. Janse, R. R. Deshmukh, “Hyperspectal Remote Sensing for?Agriculture: A Review”, International Journal of Computer?Applications,Vol.172 No.7, pp. 0975 – 8887, 2017.

[32] A. R. Huete, B. K. Liu, L. Van, “A comparison of vegetation indices?over a global set of TM images for EOS-MODIS”, Remote Sensing of?Environment, Vol. 59, pp. 440-451, 1997.?

[33] J.W. Rouse, R.H. Haas, J.A. Schell, D.W. Deering, “Monitoring?vegetation systems in the great plains with ERTS, Third ERTS?symposium”, NASA SP-351, NASA Washington, DC, Vol. 1, pp. 309-317, 1973.?

[34] C.F. Jorden, “Leaf area index from quality of light on the forest floor”,?Ecology, Vol. 50(4), pp. 663-666, 1969.?

[35] B. Gao, “NDWI: A normalized difference water index for remote?sensing of vegetation liquid water from space”, Remote Sensing of?Environment, Vol. 58, pp. 257-266, 1996.?

[36] J. Penuelas, J. Pinol, R. Ogaya, I. Lilella, “Estimation of plant water?content by the reflectance water index WI (R900/ R970)”, International?journal of remote sensing, Vol. 18, pp. 2869-2875, 1997.?

[37] Y. J. Kaufman, D. Tanier, “Atmospherically resistant vegetation index?(ARVI) for EOS-MODIS”, IEEE Transaction on Geoscience and?Remote Sensing, Vol. 30(2), pp. 261-270, 1992.?

[38] A.R. Huete, “A soil adjusted vegetation index (SAVI)”, Remote?Sensing of Environment, Vol. 71, pp. 158-182, 2000.?

[39] A.A. Gitelson, Y. J. Kaufman, R. Stark, D. Rundquist, “Novel?algorithm for remote estimation of vegetation fraction”, Remote?Sensing of Environment, vol. 80, pp. 76-87, 2002.?

[40] J. Penuelas, F. Baret, I. Filella, “Semi empirical indices to assess?carotenoids/ chlorophyll a ratio from leaf spectral reflectance”,?Photosynthetica, Vol. 31, pp. 221-230, 1995.?

[41] G. A. Blackburn, “Spectral indices for estimating photosynthetic?pigment concentration: A test using senescent tree leaves”,?International journal of remote sensing, Vol. 19, pp. 657-675, 1998.?

[42] G. A. Blackburn, “Quantifying chlorophyll and carotenoids from leaf?to canopy scale: An evaluation of some hyperspectral approaches”,?Remote Sensing of Environment, Vol. 66, pp. 273-285, 1998.?

[43] M. N. Merzlyak, A. A. Gitelson, O. B. Chivkunova, Y. Ratikin, “Nondestructive optical detection of pigment changes during leaf senescent?and fruit ripening”, Physiologia Plantarum, Vol. 105, pp. 135-141,?1999.?

[44] M. S. Kim, “The use of narrow spectral bands for improving remote?sensing estimation of fractionally absorbed photosynthetically active?radiation (fAPAR)”, Master Thesis, Department of Geography,?University of Maryland, College Park, 1994.?

[45] C. S. T. Daughtry, C. L. Walthall, M. S. Kim, E. B. de Colstoun, J. E.?McMurtrey, “Estimating corn leaf chlorophyll concentration from leaf?and canopy reflectance”, Remote Sensing of Environment, Vol. 74,?pp. 229-239, 2000.?

[46] A. A. Gitelson, G. P. Keydan, M. N. Merzlyak, “Three band model for?noninvasive estimation of chlorophyll, carotenoids and anthocyanin?contents in higher plant leaves”, Geophysical Research Letters, Vol.?33, L11402, 2006.?

[47] A. A. Gitelson, M. N. Merzlyak, O. B. Chivkunova, “Optical?properties and non-destructive estimation of anthocyanin content in?plant leaves”, Photochemistry and Photobiology, Vol. 74(1), pp. 38-45, 2001.?

[48] J. A. Gaman, J. S. Surfus, “Assessing leaf pigment content and activity?with a reflectometer”, New Phytologist, Vol. 143, pp. 105-117, 1999.?

[49] A. K. Van Den Berg, T. D. Perkins, “Non-destructive estimation of?anthocyanin content in autumn auger maple leaves”, Horticultural?Science, vol. 40(3), pp. 685-685, 2005.?

[50] A. A. Gitelson, Y. Zur, O. B. Chivkunova, M. N. Merzlyak, “Assessing?carotenoid content in plant leaves with reflectance spectroscopy,?Photochemistry and Photobiology, Vol. 75(3), pp. 272-281, 2002.?

[51] A. R. Hunt, B. N. Rock, “Detection of changes in leaf water content?using near- and middle-infrared reflectance”, Remote Sensing of?Environment, Vol. 30, pp. 43-54, 1989.?

[52] B. N. Rock, J. E. Vogelmann, D. L. Williams, A. F. Vogelmann, T.?Hoshizaki, “Detection of forest damage”, BioScience, Vol. 36(7), pp.?439-445, 1986.?

[53] J. A. Gamon, L. Serrano, J. S. Surfus, “The photochemical reflectance?index: An optical indicator of photosynthetic radiation-use efficiency?across species, functional types, and nutrient level”, Oecologia, Vol.?112, pp. 492-501, 1997.?

[54] D. N. H. Horler, M. Dockray, J. Barber, “The red-edge of plant leaf?reflectance”, International journal of remote sensing, Vol. 4, pp. 273-288, 1983.?




News / 相關(guān)新聞 More
2024 - 12 - 02
森林約占全球土壤碳庫(kù)的70%,是調(diào)節(jié)大氣CO2濃度的關(guān)鍵因素。濕地作為陸地和水生系統(tǒng)的過渡區(qū),通常地下水位接近地表。全球變暖導(dǎo)致北方低地森林被濕地取代,造成景觀破碎化,并可能改變碳通量。土壤CO2通量占大氣碳的20-38%,其主要來源是土壤呼吸,包括自養(yǎng)和異養(yǎng)呼吸。異養(yǎng)呼吸受溫度、濕度和溶解有機(jī)物(DOM)影響。低分子量化合物(LMW)更易降解,促進(jìn)微生物活動(dòng)和土壤呼吸。解凍期雨雪事件可將DOM輸送至濕地,影響土壤CO2通量。本研究假設(shè),解凍期森林濕地集水區(qū)的土壤CO2通量受DOM運(yùn)動(dòng)的影響,目標(biāo)是分析CO2通量變化,確定DOM的影響, 并探索微生物在其中的作用。圖們江位于中國(guó)、朝鮮和俄羅斯的交界處,最終流入日本海,地處中高緯度地區(qū),范圍為北緯41.99°到44.51°(圖1(a))。布爾哈通河是圖們江的重要支流,其上游流域面積為1560平方公里。該流域以山地...
2024 - 11 - 07
對(duì)地表入滲和蒸發(fā)通量的分配,以及準(zhǔn)確量化不同空間尺度下土壤與大氣之間的質(zhì)量和能量交換過程,都需要了解土壤的水文性質(zhì)(如土壤水分特征曲線和導(dǎo)水率特征曲線)。土壤水分特征曲線(SWRC)描述了在基質(zhì)勢(shì)下土壤水分含量的平衡情況,是重要的水文特性,與土壤孔隙的大小分布和結(jié)構(gòu)密切相關(guān),受土壤結(jié)構(gòu)、質(zhì)地、有機(jī)物和粘土礦物等因素的影響。傳統(tǒng)測(cè)量SWRC的實(shí)驗(yàn)室方法繁瑣,數(shù)據(jù)往往不完整,且只覆蓋有限的水分含量范圍。近年來,近程和遙感技術(shù)得到了廣泛關(guān)注,特別是在光學(xué)域內(nèi)的土壤反射光譜已被用于獲取土壤礦物學(xué)和化學(xué)成分、有機(jī)物含量、粒度分布及水分含量等信息。這些研究為衛(wèi)星遙感提供了大尺度測(cè)繪的基礎(chǔ)。傳統(tǒng)方法主要依賴光譜轉(zhuǎn)移函數(shù),盡管能有效推斷土壤水力特性,但需大量數(shù)據(jù)進(jìn)行模型校準(zhǔn)。本文提出了一種新的實(shí)驗(yàn)室方法,通過水分含量依賴的短波紅外(SWIR)土壤反射光譜直接估計(jì)SWRC,利用最近開發(fā)的前向輻射傳輸模型,僅...
2024 - 10 - 29
水資源在糧食生產(chǎn)和生態(tài)修復(fù)中的關(guān)鍵作用,特別是在頻繁出現(xiàn)的高溫、干旱等極端天氣條件下,威脅糧食生產(chǎn),加速土地退化。研究指出,中國(guó)作為人均水資源低于世界平均水平的國(guó)家,農(nóng)業(yè)用水已占全國(guó)總用水量的60%以上,但整體用水效率較低且區(qū)域差異顯著。尤其在山區(qū)和丘陵地區(qū),土壤侵蝕和厚度減少嚴(yán)重影響了蓄水能力,加劇了干旱頻發(fā)和作物減產(chǎn)的風(fēng)險(xiǎn)。為應(yīng)對(duì)這些挑戰(zhàn),本文強(qiáng)調(diào)了通過優(yōu)化農(nóng)業(yè)管理實(shí)踐,提高用水效率,以緩解干旱脅迫,維持作物產(chǎn)量的重要性。本次田間試驗(yàn)在中國(guó)科學(xué)院鹽亭紫色土農(nóng)業(yè)生態(tài)站進(jìn)行,該站位于中國(guó)四川盆地中北部,海拔400-600m(東經(jīng)105° 27’,北緯 31°16’)(圖 1)。該地區(qū)屬于中亞熱帶季風(fēng)氣候,平均氣溫 17.3℃。年平均降水量為826mm,蒸發(fā)量為680 mm。降雨分布不均,約70%的年降水發(fā)生在夏秋季,季節(jié)性干旱頻繁,主要發(fā)生在春季和初夏。 圖1...
2024 - 10 - 29
考古學(xué)雖然常與發(fā)掘相關(guān),但許多遺址仍需通過地表上的文物和其他特征來進(jìn)行識(shí)別。對(duì)這些地表考古記錄的分析不僅可以揭示不同定居時(shí)期的信息,還能展示土地的農(nóng)業(yè)、生產(chǎn)或儀式用途,以及景觀中人、物、思想的流動(dòng)模式。本文介紹了一種利用機(jī)載高光譜短波紅外 (SWIR) 圖像的新方法,用于記錄和分析地表考古材料。SWIR 光可以區(qū)分不同類型的巖石、礦物和土壤,地質(zhì)學(xué)家經(jīng)常利用這一原理繪制地質(zhì)圖。Resonon Pika IR+高光譜成像儀能夠以優(yōu)于10厘米的空間分辨率收集SWIR圖像,從而識(shí)別并表征地表文物。本文探討了在NASA Space Archaeology 資助下進(jìn)行的實(shí)驗(yàn),展示了這項(xiàng)技術(shù)的潛力和挑戰(zhàn),特別是在成功定位和表征單個(gè)文物方面,同時(shí)指出了未來發(fā)展的關(guān)鍵方向。作者團(tuán)隊(duì)將 Resonon Pika IR+高光譜成像儀安裝在 DJI M600上(圖 1)。還在機(jī)身頂部安裝了額外的 GPS 天線桿...
Copyright ?2018-2023 北京理加聯(lián)合科技有限公司
犀牛云提供企業(yè)云服務(wù)

北京理加聯(lián)合科技有限公司

地址:北京市海淀區(qū)安寧莊東路18號(hào)光華創(chuàng)業(yè)園5號(hào)樓(生產(chǎn)研發(fā))
          光華創(chuàng)業(yè)園科研樓四層
電話:13910499761 13910499762 010-51292601
傳真:010-82899770-8014
郵箱:info@li-ca.com
郵編:100085

 

地址:深圳市寶安區(qū)創(chuàng)業(yè)二路玖悅雅軒商業(yè)裙樓3層瑞思BEEPLUS 3029室 手機(jī):13910499772

 


 


  • 您的姓名:
  • *
  • 公司名稱:
  • *
  • 地址:
  • *
  • 電話:
  • *
  • 傳真:
  • *
  • 電子郵箱:
  • *
  • 郵政編碼:
  • *
  • 留言主題:
  • *
  • 詳細(xì)說明:
  • *
在線留言
關(guān)注我們
  • 官方微信
  • 官方手機(jī)端
友情鏈接:
X
1

QQ設(shè)置

3

SKYPE 設(shè)置

4

阿里旺旺設(shè)置

等待加載動(dòng)態(tài)數(shù)據(jù)...

等待加載動(dòng)態(tài)數(shù)據(jù)...

5

電話號(hào)碼管理

  • 010-51292601
6

二維碼管理

等待加載動(dòng)態(tài)數(shù)據(jù)...

等待加載動(dòng)態(tài)數(shù)據(jù)...

展開
国产一级 片内射在线视频播放-亚洲中文字幕无码va-国产美女裸身网站免费观看视频-天堂tv亚洲tv日本tv